Skip to main content

Advertisement

Log in

Chemical analysis of in vivo–irradiated dentine of head and neck cancer patients by ATR-FTIR and Raman spectroscopy

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the effect of in vivo radiotherapy on the chemical properties of human dentine by Fourier-transform infrared spectroscopy (FTIR) and Raman analysis.

Materials and methods

Chemical composition was evaluated comparing control and irradiated group (n = 8). Irradiated teeth were obtained from radiotherapy patients subjected to fractionated X-ray radiation of 1.8 Gy daily totaling 72 Gy. The teeth were sectioned according to the type of dentine (crown or root dentine), obtaining 3-mm dentine cervical slices. The analyzed parameters by FTIR and Raman spectroscopies were mineral/matrix ratio (M:M), carbonate/mineral ratio (C:M), amide I/amide III ratio, and amide I/CH2 ratio. Raman also calculated the phosphate and carbonate crystallinity.

Results

FTIR revealed that M:M had a decrease in both factors (p = 0.008; p = 0.043, respectively) and root dentine showed a lower C:M in the irradiated group (p = 0.003). Raman revealed a higher phosphate crystallinity and a lower carbonate crystallinity in crown dentine of irradiated group (p = 0.021; p = 0.039). For amide I/amide III, the irradiated showed a lower ratio when compared to the control group (FTIR p = 0.002; Raman p = 0.017). For amide I/CH2, the root dentine showed a higher ratio than the crown dentine in both methods (p < 0.001).

Conclusions

Radiotherapy altered the chemical composition of human dentine. The exchange of phosphate-carbonate ions in the hydroxyapatite and higher concentration of organic components was found after radiotherapy.

Clinical relevance

The increased risk of radiation-related caries in patients undergoing head and neck radiotherapy is due not only to salivary, dietary, and microbiological changes but also to changes in tooth chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  Google Scholar 

  2. Tolentino ES, Centurion BS, Ferreira LHC, Souza AP, Damante JH, Rubira-Bullen IRF (2011) Oral adverse effects of head and neck radiotherapy: literature review and suggestion of a clinical oral care guideline for irradiated patients. J Appl Oral Sci 19(5):448–454

    Article  PubMed Central  Google Scholar 

  3. Reed R, Xu C, Liu Y, Gorski JP, Wang Y, Walker MP (2015) Radiotherapy effect on nano-mechanical properties and chemical composition of enamel and dentine. Arch Oral Biol 60(5):690–697

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lieshout HFJ, Bots CP (2014) The effect of radiotherapy on dental hard tissue – a systematic review. Clin Oral Invest 18(1):17–24

    Article  Google Scholar 

  5. Gonçalves LM, Palma-Dibb RG, Paula-Silva FW, Oliveira HF, Nelson-Filho P, Silva LA, Queiroz AM (2014) Radiation therapy alters microhardness and microstructure of enamel and dentin of permanent human teeth. J Dent 42(8):986–992

    Article  PubMed  Google Scholar 

  6. de Siqueira Mellara T, Palma-Dibb RG, de Oliveira HF, Garcia Paula-Silva FW, Nelson-Filho P, da Silva RA, da Silva LA, de Queiroz AM (2014) The effect of radiation therapy on the mechanical and morphological properties of the enamel and dentin of deciduous teeth – an in vitro study. Radiat Oncol 9:30. https://doi.org/10.1186/1748-717X-9-30

    Article  PubMed  PubMed Central  Google Scholar 

  7. Qing P, Huang S, Gao S, Qian L, Yu H (2016) Effect of gamma irradiation on the wear behavior of human tooth dentin. Clin Oral Invest 20(9):2379–2386

    Article  Google Scholar 

  8. Liang X, Zhang JY, Cheng IK, Li JK (2016) Effect of high X-ray irradiation on the nano-mechanical properties of human enamel and dentine. Braz Oral Res 30:e9. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0009

    Article  Google Scholar 

  9. Novais VR, Soares PB, Guimarães CM, Schliebe LR, Braga SS, Soares CJ (2016) Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin. Braz Oral Res 27(6):670–674. https://doi.org/10.1590/0103-6440201601267

    Article  Google Scholar 

  10. Rodrigues RB, Soares CJ, Junior PCS, Lara VC, Arana-Chavez VE, Novais VR (2018) Influence of radiotherapy on the dentin properties and bond strength. Clin Oral Investig 22(2):875–883

    Article  PubMed  Google Scholar 

  11. Ferreira EMS, Soares LES, Antunes HE, Uemura ST, Barbosa PS, Salmon HA Jr, Sant’Anna GR (2016) Effect of therapeutic doses of radiotherapy on the organic and inorganic contents of the deciduous enamel: an in vitro study. Clin Oral Invest 20(8):1953–1961

    Article  Google Scholar 

  12. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants and nutrition. Nutrition 18(10):872–879

    Article  Google Scholar 

  13. Pioch T, Golfels D, Staehle HJ (1992) An experimental study of the stability of irradiated teeth in the region of the dentinoenamel junction. Endod Dent Traumatol 8(6):241–244

    Article  PubMed  Google Scholar 

  14. Walker MP, Wichman B, Cheng A, Coster J, Williams K (2011) Impact of radiotherapy dose on dentition breakdown in head and neck cancer patients. Pract Radiat Oncol 1(3):142–148

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kielbassa AM, Beetz J, Schendera A, Hellwing E (1997) Irradiation effects on microhardness of fluoridated and non-fluoridated bovine dentin. Eur J Oral Sci 105(5 Pt1):444–447

    Article  PubMed  Google Scholar 

  16. McGuire JD, Mousa AA, Zhang BJ, Todoki LS, Huffman NT, Chandrababu KB, Moradian-Oldak J, Keightley A, Wang Y, Walker MP, Gorski JP (2014) Extracts of irradiated mature human tooth crowns contain MMP-20 protein and activity. J Dent 42(5):626–635

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Yao X, Liu YW, Wang Y (2014) A Fourier transform infrared spectroscopy analysis of carious dentin from transparent zone to normal zone. Caries Res 48(4):320–329

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lopes CCA, Limirio PHJO, Novais VR, Dechichi P (2018) Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl Spectrosc Rev 53:747–769. https://doi.org/10.1080/05704928.2018.1431923

    Article  Google Scholar 

  19. Xu C, Wang Y (2011) Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res B Appl Biomater 96(2):242–248

    Article  PubMed  Google Scholar 

  20. Toledano M, Aguilera FS, Osorio E, Cabello I, Toledano-Osorio M, Osorio R (2015) Functional and molecular structural analysis of dentine interfaces promoted by a Zn-doped self-etching adhesive and an in vitro load cycling model. J Mech Behav Biomed Mater 50:131–149

    Article  PubMed  Google Scholar 

  21. Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205(1–2):83–97

    Article  Google Scholar 

  22. Salehi H, Terrer E, Panayotov I, Levallois B, Jacquot B, Tassery H, Cuisinier F (2013) Functional mapping of human sound and carious enamel and dentin with Raman spectroscopy. J Biophotonics 6(10):765–774

    PubMed  Google Scholar 

  23. Seredin P, Goloshchapov D, Prutskij T, Ippolitov Y (2015) Phase transformations in a human tooth tissue at the initial stage of caries. PLoS One 10(4):e0124008. https://doi.org/10.1371/journal.pone.0124008

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zieba-Palus J, Kunicki M (2006) Application of the micro-FTIR spectroscopy, Raman spectroscopy and XRF method examination of inks. Forensic Sci Int 158(2–3):164–172

    Article  PubMed  Google Scholar 

  25. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12(3):1443–1447

    Article  PubMed  Google Scholar 

  26. Andrew Chan KL, Kazarian SG (2016) Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev 45(7):1850–1864

    Article  PubMed  Google Scholar 

  27. Duke ES, Lindemuth J (1991) Variability of clinical dentin substrates. Am J Dent 4(5):241–246

    PubMed  Google Scholar 

  28. da Cunha SRB, Fonseca FP, Ramos PAMM, Haddad CMK, Fregnani ER, Aranha ACC (2017) Effects of different radiation doses on the microhardness, superficial morphology, and mineral components of human enamel. Arch Oral Biol 80:130–135

    Article  Google Scholar 

  29. Jiang T, Ma X, Wang Y, Zhu Z, Tong H, Hu J (2007) Effects of hydrogen peroxide on human dentin structure. J Dent Res 86(11):1040–1045

    Article  PubMed  Google Scholar 

  30. Hannig M, Dounis E, Henning T, Apitz N, Stösser L (2006) Does irradiation affect the protein composition of saliva? Clin Oral Investig 10(1):61–65

    Article  PubMed  Google Scholar 

  31. Shellis RP, Featherstone JDB, Lussi A (2014) Understanding the chemistry of dental erosion. Monogr Oral Sci 25:163–179

    Article  PubMed  Google Scholar 

  32. Leventouri T, Antonakos A, Kyriacou A, Venturelli R, Liarokapis E, Perdikatsis V (2009) Crystal structure studies of human dental apatite as a function of age. Int J Biomater 2009:1–6. https://doi.org/10.1155/2009/698547

    Article  Google Scholar 

  33. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45(3):157–164

    Article  Google Scholar 

  34. Liu Y, Hsu CY (2007) Laser-induced compositional changes on enamel: a FT-Raman study. J Dent 35(3):226–230

    Article  PubMed  Google Scholar 

  35. Soares CJ, Castro CG, Neiva NA, Soares PV, Santos-Filho PCF, Naves LZ, Pereira PNR (2010) Effect of gamma irradiation on ultimate tensile strength of enamel and dentin. J Dent Res 89(2):159–164

    Article  PubMed  Google Scholar 

  36. Xu C, Wang Y (2012) Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch Oral Biol 57(4):383–391

    Article  PubMed  Google Scholar 

  37. Yamauchi M, Sricholpech M (2012) Lysine post-translational modifications of collagen. Essays Biochem 52:113–133

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cheung DT, Perelman N, Tong D, Nimni ME (1990) The effect of gamma irradiation on collagen molecules, isolated alpha-chains and crosslinked native fibers. J Biomed Mater Res 24(5):581–589

    Article  PubMed  Google Scholar 

  39. Naves LZ, Novais VR, Armstrong SR, Correr-Sobrinho L, Soares CJ (2012) Effect of gamma radiation on bonding to human enamel and dentin. Support Care Cancer 20(11):2873–2878

    Article  PubMed  Google Scholar 

  40. Yadav S, Yadav H (2013) Ionizing irradiation affects the microtensile resin dentin bond strength under simulated clinical conditions. J Conserv Dent 16(2):148–151

    Article  PubMed  PubMed Central  Google Scholar 

  41. Springer IN, Niehoff P, Warnke PH, Böcek G, Kovács G, Suhr M, Wiltfang J, Açil Y (2005) Radiation caries - radiogenic destruction of dental collagen. Oral Oncol 41(7):723–728

    Article  PubMed  Google Scholar 

  42. da Cunha SR, Ramos PA, Haddad CM, da Silva JL, Fregnani ER, Aranha ACC (2016) Effects of different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. J Adhes Dent 18(2):151–156

    PubMed  Google Scholar 

  43. Marshall GW Jr, Marshall SJ, Kinney JH, Balooch M (1997) The dentin substrate: structure and properties related to bonding. J Dent 25(6):441–458

    Article  PubMed  Google Scholar 

  44. Lussi A, Schlueter N, Rakhmatullina E, Ganss C (2011) Dental erosion – an overview with emphasis on chemical and histopathological aspects. Caries Res 45(suppl 1):2–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank FAPEMIG, CNPq and CAPES (Brazil) for the financial support. The authors are also grateful to the Laboratory of New Insulating Materials and Semiconductors (LNMIS) at Institute of Physics, Federal University of Uberlândia, Minas Gerais, Brazil.

Funding

The study was supported by FAPEMIG, CNPq and CAPES for the granting of scholarship and resource for the purchase of consumer material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veridiana Resende Novais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Miranda, R.R., Silva, A.C.A., Dantas, N.O. et al. Chemical analysis of in vivo–irradiated dentine of head and neck cancer patients by ATR-FTIR and Raman spectroscopy. Clin Oral Invest 23, 3351–3358 (2019). https://doi.org/10.1007/s00784-018-2758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-018-2758-6

Keywords

Navigation